Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
PLoS One ; 16(10): e0258336, 2021.
Article in English | MEDLINE | ID: covidwho-1463315

ABSTRACT

Decontaminating N95 respirators for reuse could mitigate shortages during the COVID-19 pandemic. Although the United States Center for Disease Control has identified Ultraviolet-C irradiation as one of the most promising methods for N95 decontamination, very few studies have evaluated the efficacy of Ultraviolet-C for SARS-CoV-2 inactivation. In addition, most decontamination studies are performed using mask coupons that do not recapitulate the complexity of whole masks. We sought to directly evaluate the efficacy of Ultraviolet-C mediated inactivation of SARS-CoV-2 on N95 respirators. To that end we created a portable UV-C light-emitting diode disinfection chamber and tested decontamination of SARS-CoV-2 at different sites on two models of N95 respirator. We found that decontamination efficacy depends on mask model, material and location of the contamination on the mask. Our results emphasize the need for caution when interpreting efficacy data of UV-C decontamination methods.


Subject(s)
Decontamination , Disinfection , Masks , N95 Respirators , Ultraviolet Rays , Decontamination/instrumentation , Decontamination/methods , Disinfection/instrumentation , Disinfection/methods , Equipment Reuse
2.
Sci Rep ; 11(1): 19970, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1462030

ABSTRACT

Particulate respirators such as N95s are an essential component of personal protective equipment (PPE) for front-line workers. This study describes a rapid and effective UVC irradiation system that would facilitate the safe re-use of N95 respirators and provides supporting information for deploying UVC for decontamination of SARS-CoV-2 during the COVID-19 pandemic. To assess the inactivation potential of the proposed UVC germicidal device as a function of time by using 3 M 8211-N95 particulate respirators inoculated with SARS-CoV-2. A germicidal UVC device to deliver tailored UVC dose was developed and test coupons (2.5 cm2) of the 3 M-N95 respirator were inoculated with 106 plaque-forming units (PFU) of SARS-CoV-2 and were UV irradiated. Different exposure times were tested (0-164 s) by fixing the distance between the lamp and the test coupon to 15.2 cm while providing an exposure of at least 5.43 mWcm-2. Primary measure of outcome was titration of infectious virus recovered from virus-inoculated respirator test coupons after UVC exposure. Other measures included the method validation of the irradiation protocol, using lentiviruses (biosafety level-2 agent) and establishment of the germicidal UVC exposure protocol. An average of 4.38 × 103 PFU ml-1 (SD 772.68) was recovered from untreated test coupons while 4.44 × 102 PFU ml-1 (SD 203.67), 4.00 × 102 PFU ml-1 (SD 115.47), 1.56 × 102 PFU ml-1 (SD 76.98) and 4.44 × 101 PFU ml-1 (SD 76.98) was recovered in exposures 2, 6, 18 and 54 s per side respectively. The germicidal device output and positioning was monitored and a minimum output of 5.43 mW cm-2 was maintained. Infectious SARS-CoV-2 was not detected by plaque assays (minimal level of detection is 67 PFU ml-1) on N95 respirator test coupons when irradiated for 120 s per side or longer suggesting 3.5 log reduction in 240 s of irradiation, 1.3 J cm-2. A scalable germicidal UVC device to deliver tailored UVC dose for rapid decontamination of SARS-CoV-2 was developed. UVC germicidal irradiation of N95 test coupons inoculated with SARS-CoV-2 for 120 s per side resulted in 3.5 log reduction of virus. These data support the reuse of N95 particle-filtrate apparatus upon irradiation with UVC and supports use of UVC-based decontamination of SARS-CoV-2 during the COVID-19 pandemic.


Subject(s)
COVID-19/prevention & control , Decontamination/instrumentation , N95 Respirators/virology , SARS-CoV-2/radiation effects , Ultraviolet Rays , Animals , COVID-19/virology , Chlorocebus aethiops , Decontamination/economics , Equipment Design , Equipment Reuse , HEK293 Cells , Humans , SARS-CoV-2/isolation & purification , Time Factors , Vero Cells
3.
PLoS One ; 16(5): e0251817, 2021.
Article in English | MEDLINE | ID: covidwho-1388915

ABSTRACT

The transmission of SARS-CoV-2 through contact with contaminated surfaces or objects is an important form of transmissibility. Thus, in this study, we evaluated the performance of a disinfection chamber designed for instantaneous dispersion of the biocidal agent solution, in order to characterize a new device that can be used to protect individuals by reducing the transmissibility of the disease through contaminated surfaces. We proposed the necessary adjustments in the configuration to improve the dispersion on surfaces and the effectiveness of the developed equipment. Computational Fluid Dynamics (CFD) simulations of the present technology with a chamber having six nebulizer nozzles were performed and validated through qualitative and quantitative comparisons, and experimental tests were conducted using the method Water-Sensitive Paper (WSP), with an exposure to the biocidal agent for 10 and 30 s. After evaluation, a new passage procedure for the chamber with six nozzles and a new configuration of the disinfection chamber were proposed. In the chamber with six nozzles, a deficiency was identified in its central region, where the suspended droplet concentration was close to zero. However, with the new passage procedure, there was a significant increase in wettability of the surface. With the proposition of the chamber with 12 nozzles, the suspended droplet concentration in different regions increased, with an average increase of 266%. The experimental results of the new configuration proved that there was an increase in wettability at all times of exposure, and it was more significant for an exposure of 30 s. Additionally, even in different passage procedures, there were no significant differences in the results for an exposure of 10 s, thereby showing the effectiveness of the new configuration or improved spraying and wettability by the biocidal agent, as well as in minimizing the impact caused by human factor in the performance of the disinfection technology.


Subject(s)
COVID-19/epidemiology , Decontamination/methods , Disinfection/methods , SARS-CoV-2/drug effects , COVID-19/metabolism , COVID-19/transmission , COVID-19/virology , Decontamination/instrumentation , Disinfectants/analysis , Disinfection/instrumentation , Humans , Hydrodynamics , Models, Theoretical , Pandemics , SARS-CoV-2/isolation & purification
4.
PLoS One ; 16(6): e0250854, 2021.
Article in English | MEDLINE | ID: covidwho-1388910

ABSTRACT

The use of personal protective equipment (PPE) has been considered the most effective way to avoid the contamination of healthcare workers by different microorganisms, including SARS-CoV-2. A spray disinfection technology (chamber) was developed, and its efficacy in instant decontamination of previously contaminated surfaces was evaluated in two exposure times. Seven test microorganisms were prepared and inoculated on the surface of seven types of PPE (respirator mask, face shield, shoe, glove, cap, safety glasses and lab coat). The tests were performed on previously contaminated PPE using a manikin with a motion device for exposure to the chamber with biocidal agent (sodium hypochlorite) for 10 and 30s. In 96.93% of the experimental conditions analyzed, the percentage reduction was >99% (the number of viable cells found on the surface ranged from 4.3x106 to <10 CFU/mL). The samples of E. faecalis collected from the glove showed the lowest percentages reduction, with 86.000 and 86.500% for exposure times of 10 and 30 s, respectively. The log10 reduction values varied between 0.85 log10 (E. faecalis at 30 s in glove surface) and 9.69 log10 (E. coli at 10 and 30 s in lab coat surface). In general, E. coli, S. aureus, C. freundii, P. mirabilis, C. albicans and C. parapsilosis showed susceptibility to the biocidal agent under the tested conditions, with >99% reduction after 10 and 30s, while E. faecalis and P. aeruginosa showed a lower susceptibility. The 30s exposure time was more effective for the inactivation of the tested microorganisms. The results show that the spray disinfection technology has the potential for instant decontamination of PPE, which can contribute to an additional barrier for infection control of healthcare workers in the hospital environment.


Subject(s)
COVID-19/prevention & control , Decontamination , Infection Control , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Protective Clothing , Respiratory Protective Devices , SARS-CoV-2 , Bacteria , Bacterial Infections/epidemiology , Bacterial Infections/prevention & control , Bacterial Infections/transmission , COVID-19/epidemiology , COVID-19/transmission , Decontamination/instrumentation , Decontamination/methods , Humans
5.
J Appl Clin Med Phys ; 21(12): 325-328, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1384081

ABSTRACT

PURPOSE: To investigate the feasibility and practicality of ultraviolet (UV) germicidal irradiation of the inner bore of a computed tomography (CT) gantry as a means of viral decontamination. METHOD: A UV lamp (PADNUT 38 W, 253 nm UV-C light tube) and UV-C dosimeter (GENERAL UV-C Digital Light Meter No. UV512C) were used to measure irradiance throughout the inner bore of a CT scanner gantry. Irradiance (units µW/cm2 ) was related to the time required to achieve 6-log viral kill (10-6 survival fraction). RESULTS: A warm-up time of ~120 s was required for the lamp to reach stable irradiance. Irradiance at the scan plane (z = 0 cm) of the CT scanner was 580.9 µW/cm2 , reducing to ~350 µW/cm2 at z = ±20 cm toward the front or back of the gantry. The angular distribution of irradiation was uniform within 10% coefficient of variation. A conservative estimate suggests at least 6-log kill (survival fraction ≤ 10-6 ) of viral RNA within ±20 cm of the scan plane with an irradiation time of 120 s from cold start. More conservatively, running the lamp for 180 s (3 min) or 300 s (5 min) from cold start is estimated to yield survival fraction <<10-7 survival fraction within ±20 cm of the scan plane. CONCLUSION: Ultraviolet irradiation of the inner bore of the CT gantry can be achieved with a simple UV-C lamp attached to the CT couch. Such practice could augment manual wipe-down procedures, improve safety for CT technologists or housekeeping staff, and could potentially reduce turnover time between scanning sessions.


Subject(s)
COVID-19/prevention & control , Disinfection/methods , Infection Control/methods , Tomography Scanners, X-Ray Computed , Tomography, X-Ray Computed/instrumentation , Calibration , Decontamination/instrumentation , Diagnostic Imaging/methods , Infection Control/instrumentation , RNA, Viral/radiation effects , Radiometry , SARS-CoV-2/radiation effects , Ultraviolet Rays
6.
Appl Environ Microbiol ; 87(19): e0031421, 2021 09 10.
Article in English | MEDLINE | ID: covidwho-1319372

ABSTRACT

Decontamination helps limit environmental transmission of infectious agents. It is required for the safe reuse of contaminated medical, laboratory, and personal protective equipment, and for the safe handling of biological samples. Heat treatment is a common decontamination method, notably used for viruses. We show that for liquid specimens (here, solution of SARS-CoV-2 in cell culture medium), the virus inactivation rate under heat treatment at 70°C can vary by almost two orders of magnitude depending on the treatment procedure, from a half-life of 0.86 min (95% credible interval [CI] 0.09, 1.77) in closed vials in a heat block to 37.04 min (95% CI 12.64, 869.82) in uncovered plates in a dry oven. These findings suggest a critical role of evaporation in virus inactivation via dry heat. Placing samples in open or uncovered containers may dramatically reduce the speed and efficacy of heat treatment for virus inactivation. Given these findings, we reviewed the literature on temperature-dependent coronavirus stability and found that specimen container types, along with whether they are closed, covered, or uncovered, are rarely reported in the scientific literature. Heat-treatment procedures must be fully specified when reporting experimental studies to facilitate result interpretation and reproducibility, and must be carefully considered when developing decontamination guidelines. IMPORTANCE Heat is a powerful weapon against most infectious agents. It is widely used for decontamination of medical, laboratory, and personal protective equipment, and for biological samples. There are many methods of heat treatment, and methodological details can affect speed and efficacy of decontamination. We applied four different heat-treatment procedures to liquid specimens containing SARS-CoV-2. Our results show that the container used to store specimens during decontamination can substantially affect inactivation rate; for a given initial level of contamination, decontamination time can vary from a few minutes in closed vials to several hours in uncovered plates. Reviewing the literature, we found that container choices and heat treatment methods are only rarely reported explicitly in methods sections. Our study shows that careful consideration of heat-treatment procedure-in particular the choice of specimen container and whether it is covered-can make results more consistent across studies, improve decontamination practice, and provide insight into the mechanisms of virus inactivation.


Subject(s)
Decontamination/methods , Hot Temperature , Personal Protective Equipment/statistics & numerical data , SARS-CoV-2/physiology , Specimen Handling/methods , Virus Inactivation , Decontamination/instrumentation , Reproducibility of Results , Specimen Handling/instrumentation
7.
J Hosp Infect ; 112: 108-113, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1185068

ABSTRACT

BACKGROUND: The presence of coronaviruses on surfaces in the patient environment is a potential source of indirect transmission. Manual cleaning and disinfection measures do not always achieve sufficient removal of surface contamination. This increases the importance of automated solutions in the context of final disinfection of rooms in the hospital setting. Ozone is a highly effective disinfectant which, combined with high humidity, is an effective agent against respiratory viruses. Current devices allow continuous nebulization for high room humidity as well as ozone production without any consumables. AIM: In the following study, the effectiveness of a fully automatic room decontamination system based on ozone was tested against bacteriophage Φ6 (phi 6) and bovine coronavirus L9, as surrogate viruses for the pandemic coronavirus SARS-CoV-2. METHODS: For this purpose, various surfaces (ceramic tile, stainless steel surface and furniture board) were soiled with the surrogate viruses and placed at two different levels in a gas-tight test room. After using the automatic decontamination device according to the manufacturer's instructions, the surrogate viruses were recovered from the surfaces and examined by quantitative cultures. Then, reduction factors were calculated. FINDINGS: The ozone-based room decontamination device achieved virucidal efficacy (reduction factor >4 log10) against both surrogate organisms regardless of the different surfaces and positions confirming a high activity under the used conditions. CONCLUSION: Ozone is highly active against SARS-CoV-2 surrogate organisms. Further investigations are necessary for a safe application and efficacy in practice as well as integration into routine processes.


Subject(s)
Automation/instrumentation , COVID-19/prevention & control , Disinfectants/pharmacology , Disinfection/instrumentation , Disinfection/methods , Ozone/pharmacology , Animals , Bacteriophages/drug effects , COVID-19/transmission , Cattle , Coronavirus, Bovine/drug effects , Cross Infection/prevention & control , Cross Infection/virology , Decontamination/instrumentation , Decontamination/methods , Equipment and Supplies, Hospital/virology , Hospitals , Humans , SARS-CoV-2/drug effects
8.
J Hosp Infect ; 109: 82-87, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1009665

ABSTRACT

BACKGROUND: The SARS-CoV-2 pandemic has highlighted the urgent need for safe and effective surface decontamination methods, particularly in healthcare settings. AIM: To evaluate the effectiveness of peracetic acid (PAA) dry fogging in decontaminating healthcare facility surfaces experimentally contaminated with SARS-CoV-2. METHODS: Nine materials (stainless steel, latex painted wood, unsealed hardwood, melamine countertop, vinyl flooring, clear plastic, faux leather, computer keyboard button, and smartphone touch screen) were surface contaminated with >106 median tissue culture infectious dose (TCID50) of SARS-CoV-2, and allowed to dry before exposing to PAA dry fogging. FINDINGS: When fumigated with PAA dry fog for 1 h, no infectious SARS-CoV-2 virus was recovered from any of the experimentally inoculated surface types. By contrast, high titres of infectious virus were recovered from corresponding untreated drying controls of the same materials. CONCLUSION: Standard surface decontamination processes, including sprays and wipes, are laborious and frequently cannot completely decontaminate sensitive electronic equipment. The ease of use, low cost, and overall effectiveness of a PAA dry fogging suggest that it should be considered for decontaminating healthcare settings, particularly intensive care units where severely ill SARS-CoV-2 patients are cared for.


Subject(s)
Decontamination/methods , Disinfectants/pharmacology , Fumigation , Health Facilities , Peracetic Acid/pharmacology , SARS-CoV-2/drug effects , Decontamination/instrumentation , Equipment Reuse , Surface Properties/drug effects
9.
Am J Infect Control ; 49(4): 424-429, 2021 04.
Article in English | MEDLINE | ID: covidwho-917197

ABSTRACT

BACKGROUND: Filtering facepiece respirators (FFR) are critical for protecting essential personnel and limiting the spread of disease. Due to the current COVID-19 pandemic, FFR supplies are dwindling in many health systems, necessitating re-use of potentially contaminated FFR. Multiple decontamination solutions have been developed to meet this pressing need, including systems designed for bulk decontamination of FFR using vaporous hydrogen peroxide or ultraviolet-C (UV-C) radiation. However, the large scale on which these devices operate may not be logistically practical for small or rural health care settings or for ad hoc use at points-of-care. METHODS: Here, we present the Synchronous UV Decontamination System, a novel device for rapidly deployable, point-of-care decontamination using UV-C germicidal irradiation. We designed a compact, easy-to-use device capable of delivering over 2 J cm2 of UV-C radiation in one minute. RESULTS: We experimentally tested Synchronous UV Decontamination System' microbicidal capacity and found that it eliminates near all virus from the surface of tested FFRs, with less efficacy against pathogens embedded in the inner layers of the masks. CONCLUSIONS: This short decontamination time should enable care-providers to incorporate decontamination of FFR into a normal donning and doffing routine following patient encounters.


Subject(s)
COVID-19/prevention & control , Decontamination/instrumentation , Point-of-Care Systems , Respiratory Protective Devices/virology , SARS-CoV-2 , Ultraviolet Rays , COVID-19/virology , Decontamination/methods , Equipment Reuse , Humans
10.
Appl Opt ; 59(25): 7585-7595, 2020 Sep 01.
Article in English | MEDLINE | ID: covidwho-751067

ABSTRACT

We present evidence-based design principles for three different UV-C based decontamination systems for N95 filtering facepiece respirators (FFRs) within the context of the SARS-CoV-2 outbreak of 2019-2020. The approaches used here were created with consideration for the needs of low- and middle-income countries (LMICs) and other under-resourced facilities. As such, a particular emphasis is placed on providing cost-effective solutions that can be implemented in short order using generally available components and subsystems. We discuss three optical designs for decontamination chambers, describe experiments verifying design parameters, validate the efficacy of the decontamination for two commonly used N95 FFRs (3M, #1860 and Gerson #1730), and run mechanical and filtration tests that support FFR reuse for at least five decontamination cycles.


Subject(s)
Air Filters , Decontamination/instrumentation , Equipment Design/methods , Masks , Ultraviolet Rays , Air Filters/microbiology , Air Filters/virology , Equipment Reuse , Humidity , Ozone/chemical synthesis , Ozone/toxicity , Temperature , Ultraviolet Rays/adverse effects
11.
mBio ; 11(3)2020 06 25.
Article in English | MEDLINE | ID: covidwho-616491

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a severe, international shortage of N95 respirators, which are essential to protect health care providers from infection. Given the contemporary limitations of the supply chain, it is imperative to identify effective means of decontaminating, reusing, and thereby conserving N95 respirator stockpiles. To be effective, decontamination must result in sterilization of the N95 respirator without impairment of respirator filtration or user fit. Although numerous methods of N95 decontamination exist, none are universally accessible. In this work, we describe a microwave-generated steam decontamination protocol for N95 respirators for use in health care systems of all sizes, geographies, and means. Using widely available glass containers, mesh from commercial produce bags, a rubber band, and a 1,100-W commercially available microwave, we constructed an effective, standardized, and reproducible means of decontaminating N95 respirators. Employing this methodology against MS2 phage, a highly conservative surrogate for SARS-CoV-2 contamination, we report an average 6-log10 plaque-forming unit (PFU) (99.9999%) and a minimum 5-log10 PFU (99.999%) reduction after a single 3-min microwave treatment. Notably, quantified respirator fit and function were preserved, even after 20 sequential cycles of microwave steam decontamination. This method provides a valuable means of effective decontamination and reuse of N95 respirators by frontline providers facing urgent need.IMPORTANCE Due to the rapid spread of coronavirus disease 2019 (COVID-19), there is an increasing shortage of protective gear necessary to keep health care providers safe from infection. As of 9 April 2020, the CDC reported 9,282 cumulative cases of COVID-19 among U.S. health care workers (CDC COVID-19 Response Team, MMWR Morb Mortal Wkly Rep 69:477-481, 2020, https://doi.org/10.15585/mmwr.mm6915e6). N95 respirators are recommended by the CDC as the ideal method of protection from COVID-19. Although N95 respirators are traditionally single use, the shortages have necessitated the need for reuse. Effective methods of N95 decontamination that do not affect the fit or filtration ability of N95 respirators are essential. Numerous methods of N95 decontamination exist; however, none are universally accessible. In this study, we describe an effective, standardized, and reproducible means of decontaminating N95 respirators using widely available materials. The N95 decontamination method described in this work will provide a valuable resource for hospitals, health care centers, and outpatient practices that are experiencing increasing shortages of N95 respirators due to the COVID-19 pandemic.


Subject(s)
Betacoronavirus/radiation effects , Coronavirus Infections/prevention & control , Decontamination/instrumentation , Decontamination/methods , Masks , Steam , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/virology , Decontamination/standards , Disease Transmission, Infectious/prevention & control , Disinfection/instrumentation , Disinfection/methods , Equipment Reuse/standards , Filtration , Humans , Microwaves , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Reproducibility of Results , SARS-CoV-2 , Sterilization , United States
SELECTION OF CITATIONS
SEARCH DETAIL